
POWER BI CHEATSHEET

OVERVIEW

What is Power BI?

Components

Built-in and additional
languages

Power Query DAX Drill Down License

Dataflow

Visualization

Tooltip/Custom Tooltip

Drill-through

Bookmarks

Administration

Themes

Built-in languages
› M/Query Language—Lets you transform data
in Power Query.
› DAX (Data Analysis Expressions)—Lets you define custom
calculated tables, columns, and measures in Power BI Desktop.

"Both languages are natively available in Power BI,
which eliminates the need to install anything."

Additional languages
› Python—Lets you fetch data and create visuals.
Requires installation of the Python language on your
computer and enabling Python scripting.
› R—Lets you fetch and transform data and create visuals.
Requires installation of the R language on your computer
and enabling R scripting.

› Power BI Desktop—Desktop application
› Report—Multi-page canvas visible to end users. It serves

for the placement of visuals, buttons, images, slicers, etc.

› Data—Preview pane for data loaded into a model.

› Model—Editable scheme of relationships between tables in

a model. Pages can be used in a model for easier navigation.

› Power Query—A tool for connecting, transforming,

and combining data.

"Apart from the standard version, there is

also a version for Report Server."

› Power BI Service—A cloud service enabling access

to, and sharing and administration of, output data.
› Workspace—There are three types of workspaces:

Personal, Team, and Develop a template app. They serve

as storage and enable controlled access to output data.

› Dashboard—A space consisting of tiles in which visuals and

report pages are stored.*

› Report—A report of pages containing visuals.*

› Worksheet—A published Excel worksheet. Can be used

as a tile on a dashboard.

› Dataset—A published sequence for fetching and

transforming data from Power BI Desktop.

› Dataflow—Online Power Query representing

a special dataset outside of Power BI Desktop.*

› Application—A single location combining one

or more reports or dashboards.*

› Admin portal—Administration portal that lets you configure

capacities, permissions, and capabilities for individual users

and workspaces.

*Can be created and edited in the Power BI Service

environment.

› Data Gateway—On-premises data gateway that lets you

transport data from an internal network or a custom device

to the Power BI Service.

› Power BI Mobile—Mobile app for viewing reports. Mobile

view is applied, if it exists, otherwise the desktop view is used.

› Report Server—On-premises version of Power BI Service.

› Report Builder—A tool for creating page reports.

"It is Microsoft’s Self-Service Business

Intelligence tool for processing and

analyzing data."

Per-user License

› Free—Can be obtained for any Microsoft work or school

email account. Intended

for personal use. Users with this license can only

use the personal workspace. They cannot share

or consume shared content.

"If it is not available in Premium workspace"

› Pro—It is associated with a work/school account priced at

€8.40 per month or it is included in the E5 license. Intended for

team collaboration. Let's users access team workspaces,

consume shared content, and use apps.

› Premium per User – Includes all Power BI Pro license

capabilities, and adds features such as paginated reports, AI,

greater frequency for refresh rate, XMLA endpoint and other

capabilities that are only available to Premium subscribers.

Per-tenant License

› Premium—Premium is set

up for individual workspaces. 0 to N workspaces

can be used with a single version of this license. It provides

dedicated server computing power based

on license type: P1, P2, P3, P4*, P5*. It offers more space for

datasets, extended metrics for individual workspaces,

managed consumption of dedicated capacity, linking of Azure

AI features with datasets, and access for users with Free

licenses to shared

content. Prices start at €4,212.30.
*Only available upon special request. Intended for models larger than

100GB.

› Embedded—Supports embedding dashboards and reports

in custom apps.

› Report Server—Included in Premium or SQL Server Enterprise licenses.

› Tooltip —A default detail preview pane which

appears above a visual when you hover over its values.

Drill up to a higher-level hierarchy

Drill down to a specific field

Drill down to the next level in the hierarchy

Expand next-level hierarchy

The Visual that supports the embedding of hierarchies

enables drilling down to the embedded hierarchy’s
individual levels using the following symbols:

› Custom Tooltip —A custom tooltip is a custom-

designed report page identified as descriptive.

When you hover over visual, a page appears

with content filtered based on criteria specified

by the value in the visual.

Drill-through lets you pass from a data overview

visual to a page with specific details. The target

page is displayed with all the applied filters affecting

the value from which the drill-through originated.

Bookmarks capture the currently configured view or a
report page visual. Later, you can go back to that state
by selecting the saved bookmark. Setting options:
› Data—Stores filters, applied sort order in visuals and slicers.

By selecting the bookmark, you can re-apply the corresponding
settings.
› Display—Stores the state of the display for visuals and

report elements (buttons, images, etc.). By selecting the
bookmark, you can go back to the previously stored state
of the display.
› Current page—Stores the currently displayed page. By

selecting the bookmark, you can go back the to stored page.

Works with data fetched from data sources using

connectors. This data is then processed at the Power

BI app level and stored to an in-memory database in

the program background. This means that data is not

processed at the source level. The basic unit in Power

Query is query, which means one sequence

consisting of steps. A step is a data command that

dictates what should happen to the data when it is

loaded into Power BI. The basic definition of each

step is based on its use:
› Connecting data—Each query begins with a function that

provides data for the subsequent steps. E.g., data can be

loaded from Excel, SQL database, SharePoint etc. Connection

steps can also be used later.

› Transforming data—Steps that modify the structure of the

data. These steps include features such as Pivot Column,

converting columns to rows, grouping data, splitting columns,

removing columns, etc. Transformation steps are necessary in

order to clean data from not entirely clean data sources.

› Combining data—Data split into multiple source files needs

to be combined so that it can be analyzed in bulk. Functions

include merging queries and appending queries.
› Merge queries—This function merges queries based on the selected

key. The primary query then contains a column which can be used to

extract data from a secondary query. Supports typical join types:

› Append query—Places the resulting data from one or more selected

queries under the primary query. In this case, data is placed in columns

with names that are an exact match. Non-matching columns form new

columns with a unique name in the primary query.

› Custom function—A query intended to apply a pre-defined sequence of

steps so that the author does not need to create them repeatedly. The

custom function can also accept input data (values, sheets, etc.) to be used

in the sequence.

› Parameter—Values independent of datasets. These values can then be

used in queries. Values enable the quick editing of a model because they

can be changed in the Power BI Service environment.

The basic unit is a table or Entity consisting of
columns or Fields. Just like Queries in Power
Query, Entities in Dataflows consist of sequences
of steps. The result of such steps is stored in native
Azure Data Lake Gen 2.

"You can connect a custom Data Lake
where the data will be stored."

There are three types of entities:
› Standard entity—It only works with data fetched directly

from a data source or with data from non-stored entities
within the same dataflow.

Computed entity*—It uses data from another stored entity
within the same dataflow.

› Linked entity*—Uses data from an entity located in another
dataflow. If data in the original entity is updated,
the new data is directly passed to all
linked entities.

*Can only be used in a dedicated Power BI Premium workspace.

"It supports custom functions as well as parameters."

External Tools

They simplify the use of Power BI and extend the
capabilities offered in Power BI. These tools are
mostly developed by the community. Recommended
external tools:
› Tabular Editor

› DAX studio

› ALM Toolkit

› VertiPaq Analyzer

Language developed for data analysis. It enables the

creation of the following objects using expressions:
› Measures
› Calculated Columns
› Calculated Tables

Each expression starts with the = sign, followed

by links to tables/columns/functions/measures and

operators. The following operators are supported:
› Arithmetic { + , - , / , * , ^ }

› Comparison { = , == , > , < , >= , <= , <> }

› Text concatenation { & , && , II , IN }

› Precedence { (,) }
Operators and functions require that all

values/columns used are of the same data type

or of a type that can be freely converted; such

as a date or a number.

Visualizations or visuals let you present data in

various graphical forms, from graphs to tables,

maps, and values. Some visuals are linked to other

services outside Power BI, such as Power Apps.

In addition to basic visuals, Power BI supports

creating custom visuals. Custom visuals can be

added using a file import or from a free Marketplace

offering certified and non-certified visuals.

Certification is optional, but it verifies whether,

among other things, a visual accesses external

services and resources.

Serves as a single location for configuring all native
graphical settings for visuals and pages.

By default, you can choose from 19 predefined
themes. Custom themes can be added.

A custom theme can be applied in two different ways:
› Modification of an existing theme—A native window that

lets you modify a theme directly in the Power BI environment.
› Importing a JSON file—Any file you create only defines the

formatting that should change. Everything else remains the
same. The advantage of this approach is that you can
customize any single visual.

"The resulting theme can be exported in the JSON format and
used in any report without the need to create a theme from
scratch."

› Use metrics—Usage metrics let you monitor Power BI usage
for your organization.
› Users—The Users tab provides a link to the Microsoft 365 admin center.
› Audit logs—The Audit logs tab provides a link to the Security &
Compliance center.
› Tenant settings—Tenant settings enable fine-grained control over
features made available to your organization. It controls which features
will be enabled or disabled and for which users and groups.
› Capacity settings—The Power BI Premium tab enables you to
manage any Power BI Premium and Embedded capacities.
› Embed codes—You can view the embed codes that are generated for
your tenant to share reports publicly. You can also revoke or delete codes.
› Organization visuals—You can control which type of Power BI visuals
users can access across the organization.
› Azure connections—You can control workspace-level storage
permissions for Azure Data Lake Gen 2.
› Workspaces—You can view the workspaces that exist in your tenant
on the Workspaces tab.
› Custom branding—You can customize the look of Power BI for your
whole organization.
› Protection metrics—The report shows how sensitivity labels help
protect your content.
› Featured content—You can manage all the content promoted in the
Featured section.

POWER BI CHEATSHEET

DAX

What is DAX?

Introduction to DAX

Operators

Calculation contexts

“ Data Analysis Expressions (DAX) is a

library of functions and operators

combined to create formulas and

expressions “

Calcuation Groups Hierarchy

› Where to find
› Power BI, Power Pivot for Excel, Microsoft Analysis Services

› Purpose
› DAX was created to enumerate formulas across the data

model, where the data is stored in the form of tables, which

can be linked together through the sessions. They may have a

cardinality of either 1: 1, 1: N, or M: N and your direction,

which decides which table filters which. These sessions are

either active or inactive. The active session is automatically

and participates in the calculation. The inactive is involved in

this when it is activated, for example, by a function

USERELATIONSHIP()

Basic concepts

› Constructs and their notation
› Table – ‘Table‘
› Column – [Column] -> ‘Table‘[Column]

› Measure – [NameOfMeasure]

› Comments

› Single-line (CTRL + ´) – // or --
› Multi-line – /* */

› Data types
› INTEGER

› DECIMAL

› CURRENCY

› DATETIME

› BOOLEAN

› STRING

› VARIANT (not implemented in Power BI)

› BINARY

› DAX can work very well with some types as well combined as

if it were the same type. If so, for example, the DATETIME and

INTEGER data types are supported operator "+" then it is

possible to use them together.

Example: DATETIME ([Date]) + INTEGER (1) = DATETIME ([Date] + 1)

› Arithmetic { + , - , / , * , ^ }

› Comparative { = , == , > , < , >= , <= , <> }

› Joining text { & }

› Logic { && , II , IN, NOT }

› Prioritization { (,) }

Calculated Columns

› They behave like any other column in the table.

Instead of coming from a data source, they are

created through a DAX expression evaluated based on

the current context line, and we cannot get values of
another row directly.
› Import mode. Their evaluation and storage is in progress

when processing the model.

› DirectQuery mode. They are evaluated at runtime, which may

slow down the model.

Profit = Trades[Quantity]*Trades[UnitPrice]

Measures

› They do not compare row-based calculations, but they

perform aggregation of row-based values input contexts that

the environment passes to the calculation. Because of this,

there can be no pre-counting result. It must be evaluated

only at the moment when Measure is called.

› The condition is that they must always be linked to the table

to store their code, which is possible at any time alter.

Because their calculation is no longer directly dependent, it is

common practice to have one separate Measure Table, which

groups all Measures into myself. For clarity, they are

therefore further divided into folders.

Example of Measure:

SalesVolume = SUM (Trades[Quantity])

› Variables in DAX calculations allow avoiding

repeated recalculations of the same procedure.

Which might look like this:

NumberSort =

VAR _selectedNumber =

SELECTEDVALUE(Table[Number])

RETURN

IF(_selectedNumber < 4, _selectedNumber, 5)

› Their declaration uses the word VAR after followed

by the name "=" and the expression. The first using

the word VAR creates a section for DAX where

possible declare such variables 1 to X. Individual

variables always require a comment for their

declaration VAR before setting the name. To end this

section, the word RETURN that it defines is a

necessary return point for calculations.

› Variables are local only.

› If there is a variable in the formula that is not used

to get the result, this variable does not evaluate.

(Lazy Evaluation)

› Evaluation of variables is performed based on

evaluated context instead of the context in which

the variable is used directly. Within one, The

expression can be multiple VAR / RETURN sections

that always serve to evaluate the currently

evaluated context.

› They can store both the value and the whole table

Variables

Calculate type function

› All calculations are evaluated on a base basis some

context that the environment brings to the

calculation. (Evaluation context)
› Context Filter -

The following calculation calculates

the profit forindividual sales.

Revenue =

SUMX(Trades,

Trades[Quantity]*

Trades[UnitPrice]

)

If I place this calculation in a table

without a Country column, then the

result will be 5,784,491.77. With this column, we get "Total"

the same as the previous calculation. Still, the individual

records provide us with a FILTER context that filters in

calculating the input the SUMX function's input. They behave

the same way, for example, AXES in the chart.

› The filter context is can be adjusted with various functions,

such as FILTER,ALL, ALLSELECTED

› Row context - Unlike the previous one, this context does not

filter the table. It is used to iterate over tables and evaluate

values columns. They are typical, but at the same time,

specific example calculated columns that are calculated from

data that are valid for the table row being evaluated. In

particular that, manual creation is not required when creating

the line context because DAX makes it. Above the mentioned

example with the use of SUMX also hides in itself line context.

Because SUMX is the function for that specified, the table in

the first argument performs an iterative pass and evaluates

the calculation line by line. The line context is possible to use

even nested. Or, for each row of the table, evaluates each row

of a different table.

› CALCULATE, and CALCULATETABLE are functions that can

programmatically set the context filter. In addition to this

feature converts any existing line context to a context filter.

› Calculate and Calculatetable syntax:
CALCULATE / CALCULATETABLE (

<expression> [, <filter1> [, …]]
)

› The section filter within the Calculate expression is NOT of

type boolean but Table type. Nevertheless, boolean can be

used as an argument.

› Example of using the calculate function in a cumulative

calculation the sum of sales for the last 12 months:
CALCULATE (

SUM (Trades[Quantity]),

DATESINPERIOD(

DateKey[Date],

MAX (DateKey[Date]),

-1,

YEAR

))

› Syntax Sugar:
› [TradeVolume](Trades[Dealer] = 1)

=

CALCULATE ([TradeVolume], Trades[Dealer] = 1)

=
CALCULATE ([TradeVolume], FILTER (

ALL (Trades[Dealer]) ,

Trades[Dealer] = 1))

› They are very similar to Calculated members from MDX. In

Power BI, it is not possible to create them directly in the

Desktop application environment, but an External Tool

Tabular Editor is required.

› This is a set of Calculation Items grouped according to their

purpose and whose purpose is to prepare an expression,

which can be used for different input measures, so it doesn‘t
have to write the same expression multiple times. To where

she would be, but the input measure is placed

SELECTEDMEASURE().

Example:

CALCULATE (SELECTEDMEASURE(),

Trades[Dealer] = 1)

› From a visual point of view, the Calculation Group looks like a

table with just two columns, "Name," "Ordinal," and rows

that indicate the individual Calculation Items.

› In addition to facilitating the reusability of the prepared

expressions also provide the ability to modify the output

format of individual calculations. Within this section, “Format

String Expression ”often uses the DAX function

SELECTEDMEASUREFORMATSTRING(), which returns a format

string associated with the Measures being evaluated.

Example:

VAR _selectedCurrency = SELECTEDVALUE(Trades[Currency])

RETURN

SELECTEDMEASUREFORMATSTRING() & „ “ & _selectedCurrency

› In Power BI, they can all be evaluated pre-prepared items, or

it is possible, for

example, to use the

cross-section to define

items that are currently

being evaluated

› Sometimes, however, it is

necessary to enable the evaluation of Calculation Items only

for Specific Measures. In that case, it is possible to use the

ISSELECTEDMEASURE() function, whose output is a value of type

boolean or the SELECTEDMEASURENAME() function that returns

the name of the currently inserted measure as a string.

Conditions

› Like most languages, DAX uses the IF function. Within this

language, it is defined by syntax:
IF (<logical_test>, <value_if_true>[, <value_if_false>])

Where false, the branch is optional. The IF function explicitly

evaluates only a branch that is based on the result of a logical

test relevant.

› If both branches need to be evaluated, then there is a function

IF.EAGER() whose syntax is the same as IF itself but

evaluates as:
VAR _value_if_true = <value_if_true>

VAR _value_if_false = <value_if_false>

RETURN

IF (<logical_test>, _value_if_true, _value_if_false)

› IF has an alternative as IFERROR. Evaluates the expression

and return the output from the <value_if_error> branch only if

the expression returns an error. Otherwise, it returns the

value of the expression itself.

› DAX supports concatenation of conditions, both using

submerged ones IF, so thanks to the SWITCH function. It

evaluates the expression against the list values and returns one
of several possible result expressions.

› The basic building block of DAX queries is the expression

EVALUATE followed by any expression whose output is a

table.

Example:

EVALUATE

ALL (Trades[Dealer])

› The EVALUATE statement can be divided into three primary

sections. Each section has its specific purpose and its

introductory word.
› Definition – It always starts with the word DEFINE. This section defines

local entities such as tables, columns, variables, and measures. There can

be one section definition for an entire query, although a query can contain

multiple EVALUATEs

› Query – It always starts with the word EVALUATE. This section contains

the table expression to evaluate and return as a result.

› Result – This is a section that is optional and starts with the word ORDER

BY. It contains the possibility to sort the result based on the inserted

inputs.

Example:

DEFINE

VAR _tax = 0.79

EVALUATE

ADDCOLUMNS(

Trades,

„AdjustedpProfit“,
(Trades[Quantity] * Trades[UnitPrice]) * _tax

)

ORDER BY [AdjustedpProfit]

› This type of notation is used, for example, in DAX Studio

(daxstudio.org). It is a publicly available tool that provides free

access to query validation, code debugging, and query

performance measurement.

› DAX studio has the ability to connect directly to

Analysis Services, Power BI a Power Pivot for Excel

DAX Queries

Recommended sources

› Marco Russo & Alberto Ferrari
› Daxpatterns.com

› dax.guide

› The Definitive Guide to DAX

› DAX itself has no capability within the hierarchy to

automatically convert your calculations to parent or child

levels. Therefore, each level must Prepare Your Measures,

which are then displayed based on the ISINSCOPE function.

She tests which level to go just evaluating. Evaluation takes

place from the bottom to the top level.

› The native data model used by DAX does not directly support

its parent/child hierarchy. On the other hand, DAX contains

functions that can convert this hierarchy to separate columns.
› PATH - It accepts two parameters, where the first parameter is the key ID

column tables. The second parameter is the column that holds the parent

ID of the row. The result of this function then looks like this: 1|2|3|4

Syntax: PATH(<ID_columnName>, <parent_columnName>)

› PATHITEM – Returns a specific item based on the specified position

from the string, resulting from the PATH function. Positions are counted

from left to right. The inverted view uses the PATHITEMREVERSE function.

Syntax: PATHITEM(<path>, <position>[, <type>])

› PATHILENGTH – Returns the number of parent elements to the specified

item in given the PATH result, including itself.

Syntax: PATHLENGTH(<path>)

› PATHCONTAINS – Returns true if the specified item is specified exists in

the specified PATH path.

Syntax: PATHCONTAINS(<path>, <item>)

POWER BI CHEATSHEET

POWER QUERY

What is Power Query?

Components

Data values Custom function Syntax Sugar

› Ribbon – A ribbon containing settings and pre-built features by Power

Query itself rewrites in M language for user convenience.

› Queries – simply a named M expression. Queries can be moved into

groups

› Primitive – A primitive value is a single-part value, such as a number,

logical, date, text, or null. A null value can be used to indicate the absence

of any data.

› List – The list is an ordered sequence of values. M supports endless lists.

Lists define the characters “{“ and “}“ indicate the beginning and the end of

the list.

› Record – A record is a set of fields, where the field is a pair of which form

the name and value. The name is a text value that is in the field record

unique.

› Table – A table is a set of values arranged in named columns and rows.

Table can be operated on as if it is a list of records, or as if it is a record of

lists. Table[Field]` (field reference syntax for records) returns a list of values in

that field. ̀ Table{i}` (list index access syntax) returns a record representing a

row of the table.

› Function – A function is a value that when called using arguments creates a

new value. Functions are written by listing the function argumets in

parentheses, followed by the transition symbol “=>“ and the expression
defining the function. This expression usually refers to argumets by

name. There are also functions without argumets.

› Parameter – The parameter stores a value that can be used for

transformations. In addition to the name of the parameter and the value it

stores, it also has other properties that provide metadata. The undeniable

advantage of the parameter is that it can be changed from the Power BI

Service environment without the need for direct intervention in the data

set. Syntax of parameter is as regular query only thing that is special is that

the metadata follows a specific format.

› Formula Bar – Displays the currently loaded step and allows you to edit

it.To be able to see formula bar, It has to be enabled in the ribbon menu

inside View category.

› Query settings – Settings that include the ability to edit the name and

description of the query. It also contains an overview of all currently applied

steps. Applied Steps are the variables defined in a let expression and they

are represented by varaibles names.

› Data preview – A component that displays a preview of the data in the

currently selected transformation step.

› Status bar – This is the bar located at the bottom of the screen. The row

contains information about the approximate state of the rows, columns,

and time the data was last reviewed. In addition to this information, there is

profiling source information for the columns. Here it is possible to switch

the profiling from 1000 rows to the entire data set.

“An IDE for M development“

Functions in Power Query

Knowledge of functions is your best helper when working with

a functional language such as M. Functions are called with

parentheses.

› Shared – Is a keyword that loads all functions

(including help and example) and enumerators in

result set. The call of function is made inside empty

query using by = # shared

Functions can be divided into two categories:

› Prefabricated – Example: Date.From()

› Custom – these are functions that the user himself prepares

for the model by means of the extension of the notation by

„()=> “, where the argumets that will be required for the

evaluation of the function can be placed in parentheses.

When using multiple argumets, it is necessary to separate

them using a delimiter.

Each value type is associated with a literal syntax, a set of values

of that type, a set of operators defined above that set of values,
and an internal type attributed to the newly created values.

› Null – null

› Logical – true, false

› Number – 1, 2, 3, ...

› Time – #time(HH,MM,SS)

› Date – #date(yyyy,mm,ss)

› DateTime – #datetime(yyyy,mm,dd,HH,MM,SS)

› DateTimeZone –
#datetimezone(yyyy,mm,dd,HH,MM,SS, 9,00)

› Duration – #duration(DD,HH,MM,SS)

› Text – “text“
› Binary – #binary(“link“)
› List – {1, 2, 3}

› Record – [A = 1, B = 2]

› Table – #table({columns},{{first row contenct},{}…})*
› Function – (x) => x + 1

› Type – type { number }, type table [A = any, B = text]

* The index of the first row of the table is the same as for the records in sheet 0

Operators

There are several operators within the M language, but not every

operator can be used for all types of values.

› Primary operators

› (x) – Parenthesized expression

› x[i] – Field Reference. Return value from record, list of values

from table.

› x{i} – Item access. Return value from list, record from table.

“Placing the “?“ Character after the operator returns null if the
index is not in the list “

› x(…) – Function invocation

› {1 .. 10} – Automatic list creation from 1 to 10

› … – Not implemented

› Mathematical operators – +, -, *, /

› Comparative operators

› > , >= – Greater than, greater than or equal to

› < , <= – Less than, less than or equal to

› = , <> – is equal, is not equal. Equal returns true even for

null = null

› Logical operators

› and – short-circuiting conjunction

› or – short-circuiting disjunction

› not – logical negation

› Type operators

› as – Is compatible nullable-primitive type or error

› is – Test if compatible nullable-primitive type

› Metadata - The word meta assigns metadata to a value.

Example of assigning metadata to variable x:

“x meta y“ or “x meta [name = x, value = 123,…]“
Within Power Query, the priority of the operators applies, so for example

“X + Y * Z“ will be evaluated as “X + (Y * Z)“

DEMO

› Operators can be combined. For example, as follows:

› LastStep[Year]{[ID]}
*This means that you can get the

value from another step based on the index of the column

› Production of a DateKey dimension goes like this:

#table(

type table [Date=date, Day=Int64.Type, Month=Int64.Type,

MonthName=text, Year=Int64.Type,Quarter=Int64.Type],

List.Transform(

List.Dates(start_date, (start_date-endd_ate),

#duration(1, 0, 0 ,0)),

each {_, Date.Day(_), Date.Month(_),

Date.MonthName(_), Date.Year(_), Date.QuarterOfYear(_)}

))

Keywords

and, as, each, else, error, false, if, in, is, let, meta, not,

otherwise, or, section, shared, then, true, try, type, #binary,

#date, #datetime, #datetimezone, #duration, #infinity, #nan,

#sections, #shared, #table, #time

Recursive functions

Example of custom function entries:

(x, y) => Number.From(x) + Number.From(y)

(x) =>

let

out = Number.From(x) +

Number.From(Date.From(DateTime.LocalNow()))

in

out

The input argumets to the functions are of two types:

› Required – All commonly written argumets in (). Without

these argumets, the function cannot be called.

› Optional – Such a parameter may or may not be to function to

enter. Mark the parameter as optional by placing text before

the argument name “Optional“. For example (optional x). If it

does not happen fulfillment of an optional argument, so be the

same for for calculation purposes, but its value will be null.

Optional arguments must come after required arguments.

Arguments can be annotated with `as <type>` to indicate

required type of the argument. The function will throw a type

error if called with arguments of the wrong type. Functions can

also have annotated return of them. This annotation is provided

as:

(x as number, y as text) as logical => <expression>

The return of the functions is very different. The output can be a

sheet, a table, one value but also other functions. This means

that one function can produce another function. Such a function

is written as follows:

let first = (x)=> () => let out = {1..x} in out in first

When evaluating functions, it holds that:

› Errors caused by evaluating expressions in a list of

expressions or in a function expression will propagate

further either as a failure or as an “Error“ value
› The number of arguments created from the argument

list must be compatible with the formal argumets of

the function, otherwise an error will occur with reason

code “Expression.Error“

For recursive functions is necessary to use the character “@“
which refers to the function within its calculation. A typical

recursive function is the factorial. The function for the factorial

can be written as follows:

let

Factorial = (x) =>

if x = 0 then 1 else x * @Factorial(x - 1),

Result = Factorial(3)

in

Result // = 6

Query Folding

› Each is essentially a syntactic abbreviation for declaring non-

type functions, using a single formal parameter named.

Therefore, the following notations are semantically

equivalent:

let

Source = ...,

addColumn = Table.AddColumn(Source, „NewName“, each [field1] + 1)
in

addColumn
--

let

Source = ...,

add1ToField1 = (_) => [field1] + 1,

addColumn(Source,“NewName“,add1ToField1)
in

The second piece of syntax sugar is that bare square brackets are syntax

sugar for field access of a Record named ̀ _`.

As the name implies, it is about composing. Specifically, the

steps in Power Query are composed into a single query, which

is then implemented against the data source. Data sources

that supports Query folding are resources that support the

concept of query languages as relational database sources.

This means that, for example, a CSV or XML file as a flat file

with data will definitely not be supported by Query Folding.

Therefore, the transformation does not have to take place

until after the data is loaded, but it is possible to get the data

ready immediately. Unfortunately, not every source supports

this feature.

› Valid functions
› Remove, Rename columns

› Row filtering

› Grouping, summarizing, pivot and unpivot

› Merge and extract data from queries

› Connect queries based on the same data source

› Add custom columns with simple logic

› Invalid functions
› Merge queries based on different data sources

› Adding columns with Index

› Change the data type of a column

Comments

M language supports two versions of comments:

› Single-line comments – can be created by // before code

› Shortcut: CTRL + ´
› Multi-line comments – can be created by /* before code and

*/ after code

› Shortcut: ALT + SHIFT + A

Each

Functions can be called against specific arguments. However, if

the function needs to be executed for each record, an entire

sheet, or an entire column in a table, it is necessary to append

the word each to the code. As the name implies, for each

context record, it applies the procedure behind it. Each is never

required! It simply makes it easier to define a function in-line

for functions which require a function as their argument.

let expression

Conditions

The expression let is used to capture the value from an

intermediate calculation in a named variable. These named

variables are local in scope to the `let` expression. The

construction of the term let looks like this:

let

name_of_variable = <expression>,

returnVariable = <function>(name_of_variable)

in

returnVariable

When it is evaluated, the following always applies:

› Expressions in variables define a new range containing

identifiers from the production of the list of variables and must

be present when evaluating terms within a list variables. The

expressions in the list of variables are they can refer to each

other

› All variables must be evaluated before the term let is evaluated.

› If expressions in variables are not available, let will not be

evaluated

› Errors that occur during query evaluation propagate as an error

to other linked queries.

Even in Power Query, there is an “If“ expression, which, based

on the inserted condition, decides whether the result will be a

true-expression or a false-expression.

Syntactic form of If expression:

if <predicate> then < true-expression > else < false-expression >

“else is required in M's conditional expression “
Condition entry:

If x > 2 then 1 else 0

If [Month] > [Fiscal_Month] then true else false

If expression is the only conditional in M. If you have multiple

predicates to test, you must chain together like:

if <predicate>

then < true-expression >

else if <predicate>

then < false-true-expression >

else < false-false-expression >

When evaluating the conditions, the following applies:

› If the value created by evaluating the if a condition is not a

logical value, then an error with the reason code

“Expression.Error„ is raised

› A true-expression is evaluated only if the if condition

evaluates to true. Otherwise, false-expression is evaluated.

› If expressions in variables are not available, they must not be

evaluated

› The error that occurred during the evaluation of the condition

will spread further either in the form of a failure of the entire

query or “Error“ value in the record.

The expression try… otherwise

Capturing errors is possible, for example, using the try

expression. An attempt is made to evaluate the expression

after the word try. If an error occurs during the evaluation, the

expression after the word otherwise is applied

Syntax example:

try Date.From([textDate]) otherwise null

